Efficient 3D Multi-region Prostate MRI Segmentation Using Dual Optimization
نویسندگان
چکیده
Efficient and accurate extraction of the prostate, in particular its clinically meaningful sub-regions from 3D MR images, is of great interest in image-guided prostate interventions and diagnosis of prostate cancer. In this work, we propose a novel multi-region segmentation approach to simultaneously locating the boundaries of the prostate and its two major sub-regions: the central gland and the peripheral zone. The proposed method utilizes the prior knowledge of the spatial region consistency and employs a customized prostate appearance model to simultaneously segment multiple clinically meaningful regions. We solve the resulted challenging combinatorial optimization problem by means of convex relaxation, for which we introduce a novel spatially continuous flow-maximization model and demonstrate its duality to the investigated convex relaxed optimization problem with the region consistency constraint. Moreover, the proposed continuous max-flow model naturally leads to a new and efficient continuous max-flow based algorithm, which enjoys great advantages in numerics and can be readily implemented on GPUs. Experiments using 15 T2-weighted 3D prostate MR images, by inter- and intra-operator variability, demonstrate the promising performance of the proposed approach.
منابع مشابه
Robust Image Segmentation Applied to Magnetic Resonance and Ultrasound Images of the Prostate Soumya
Prostate segmentation in trans rectal ultrasound (TRUS) and magnetic resonance images (MRI) facilitates volume estimation, multi-modal image registration, surgical planing and image guided prostate biopsies. The objective of this thesis is to develop shape and region prior deformable models for accurate, robust and computationally efficient prostate segmentation in TRUS and MRI images. Primary ...
متن کاملRobust Image Segmentation applied to Magnetic Resonance and Ultrasound Images of the Prostate
Prostate segmentation in trans rectal ultrasound (TRUS) and magnetic resonance images (MRI) facilitates volume estimation, multi-modal image registration, surgical planing and image guided prostate biopsies. The objective of this thesis is to develop shape and region prior deformable models for accurate, robust and computationally efficient prostate segmentation in TRUS and MRI images. Primary ...
متن کاملAutomatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI
Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...
متن کاملMulti-pass 3D convolutional neural network segmentation of prostate MRI images
We propose a deep neural network for the segmentation of the prostate in MRI images. The segmentation is performed using a residual fully convolutional neural network. Automatic shape learning is allowed using a Compositional Pattern-Producing Network. Moreover, a multi-pass architecture is designed to foster self-consistent segmentation. The model is trained and tested on the dataset of the ch...
متن کاملOptimization of clinical target volume delineation using magnetic resonance spectroscopic imaging (MRSI) in 3D conformal radiotherapy of prostate cancer
Background: For the purpose of individual clinical target volume assessment in radiotherapy of prostate cancer, MRSI was used as a molecular imaging modality with MRI and CT images. Materials and Methods: The images of 20 prostate cancer patients were used in this study. The MR and MRSI images were registered with CT ones using non-rigid registration technique. The CT based planning (BP), CT/MR...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Information processing in medical imaging : proceedings of the ... conference
دوره 23 شماره
صفحات -
تاریخ انتشار 2013